Asymptotic Behavior of the Hadamard Walk in the Central Limit Theorem of the Open Quantum Random Walk with Time-Dependence

Clement Boateng Ampadu
Independent Researcher, 31 Carrolton Road, West Roxbury, MA 02132-6303, USA

Abstract
The continuous-time open quantum walk and continuous-time quantum walk have been investigated [C. Pellegrini, Continuous time open quantum random walks and non-Markovian Lindblad master equations, J Stat Phys (2014)154:838-865; O. Muelken, A. Blumen, Continuous-time quantum walks: Models for coherent transport on complex networks, Physics Reports, Volume 502, 37-87 (2011); E. Farhi, S. Gutmann, Quantum computation and decision trees, Phys. Rev. A 58 (1998) 915]. In Chaobin Liu et al. [arXiv:1604.05652v1 [quant-ph] 19 Apr 2016] the continuous-time open quantum walk are introduced as the formulation of quantum dynamical semigroups of trace-preserving and completely positive linear maps (or quantum Markov semigroups) on graphs, and an open question related to the asymptotic behavior of the continuous-time open quantum walk on \(\mathbb{Z} \) in which the swap operator is related to the Hadamard gate was proposed in the conclusions section of the paper. In the present paper we introduce the continuous-time open quantum walk in the Central Limit Theorem and use a discretization process to enable us answer the open question in the conclusions section of Chaobin Liu et al. [arXiv:1604.05652v1 [quant-ph] 19 Apr 2016].

Keywords
Open Quantum Random Walk; Quantum Walk, Dual Process; Limit Theorem; Time-Dependence; Discrete Distribution; Hadamard Gate

I. Introduction
According to Konno [5] the Open Quantum Random Walk (OQRW) was introduced in order to model the quantum efficiency in biological systems and quantum computing and it is based on the non-unitary dynamics induced by the local environments [6, 7]. These random walks deal with density matrices instead of pure states. In [7], Attal et al. developed the quantum trajectory approach for OQRW and by using this concept, they have shown the central limit theorem for OQRW’s on the -dimensional integer space \(\mathbb{Z}^d \) [8].

This paper is organized as follows. In Section 2, we review the OQRW in the central limit theorem (CLT). In Section 3 we introduce time-dependence in the OQRW in the CLT via a certain matrix. In order to study the continuous-time OQRW in the CLT on \(\mathbb{Z} \), we introduce in Section 4, a discretization process which is popular in statistical distribution theory to obtain the discrete analogue of continuous distributions. We also show the asymptotic behavior of the time-dependent Hadamard walk in the CLT of the OQRW, thus giving an alternate solution to the problem posed in the conclusions section of Chaobin Liu et al. [4].

II. Open Quantum Random Walk in the Central Limit Theorem
Let \(M_2 \) be the algebra of \(2 \times 2 \) matrices. Equip \(M_2 \) with the inner product \(A, B = \text{Tr}(A^* B) \), \(A, B \in M_2 \), and define \(M = \bigotimes_{x \in \mathbb{Z}} M_2 \). Let \(k \in K = (-\pi, \pi] \). For \(a = (a(x))_{x \in \mathbb{Z}} \),

*Corresponding author: Clement Boateng Ampadu, Independent Researcher, 31 Carrolton Road, West Roxbury, MA 02132-6303, USA. E-mail: drampadu@hotmail.com

Received June 16, 2017; Accepted June 27, 2017; Published July 11, 2017

Citation: Clement Boateng Ampadu (2017) Asymptotic Behavior of the Hadamard Walk in the Central Limit Theorem of the Open Quantum Random Walk with Time-Dependence. SF J Quan Phy 1:1.

Copyright: © 2017 Clement Boateng Ampadu. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
in the position space and \(f(k) \) in the Fourier domain, define the Fourier transform and the inverse Fourier transform between the position space and the Fourier domain as follows:

\[
\hat{a}(k) = \sum_{x \in \mathbb{Z}} e^{-ikx} a(x), \quad \hat{f}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{ikx} f(k) \, dk
\]

For \(k \in K \), let \(M^{-\otimes_M} \frac{1}{2\pi} \mathbb{R} \). For \(A = \{A(x)\}_{x \in \mathbb{Z}} \in M \), define the Fourier transform between \(M \) and \(M \) as follows:

\[
\hat{A}(k) = \sum_{x \in \mathbb{Z}} e^{-ikx} A(x), \quad \hat{a}(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{ikx} A(k) \, dk
\]

and similarly for the inverse Fourier transform. Consider \(M_2 \) and define the following matrices: \(L_B(A) = BA \) and \(R_B(A) = AB \), then we see that the dynamics of the OQRW on \(M \) is given by

\[
\rho^{(n+1)} = (L_B A T + L_C R_C T^*) \rho^{(n)}, \quad \text{where} \ T \text{ and } T^* \text{ are translations in the position space of the walker defined as } (Ta)(x) = a(x+1) \text{ and } (T^* a)(x) = a(x-1), \quad \text{where } a = \{a(x)\}_{x \in \mathbb{Z}}.
\]

By induction on \(n \), we can write \(\rho^{(n)} = (L_B R_B T + L_C R_C T^*)^n \rho^{(0)} \).

In the Fourier space the evolution becomes

\[
\rho^{(n+1)} = (L_B A T T^* + L_C R_C T^*)^n \rho^{(0)}, \quad \text{and similarly for the inverse Fourier transform. Recall for the OQRW on } M, \text{ the chirality space of the walker is given by } H_C = \text{span}\{L, R\}, \text{ the position space is given by } H_S = \text{span}\{x : x \in \mathbb{Z}\}, \text{ and the Hilbert space is given by the tensor product } H = H_C \otimes H_S.
\]

Let \(B, C \) be two matrices on \(H \) such that \(B^* B + C^* C = I \). Now we introduce a so-called dual process to the OQRW.

Definition 1 [5]

The dual process of the OQRW generated by \(B, C \) is the process \(Y_n = \{Y_n(k)\}_{k \in K} \in M \) defined by

\[
Y_n(k) = (e^{jLB}T + e^{-jLB}T^*)^n \rho^{(0)}
\]

Theorem 2 [5]

The probability distribution of the OQRW is given by

\[
\rho^{(n)} = \frac{1}{2\pi} \int_{\mathbb{R}} e^{ikx} \rho^{(0)} \, dk, \quad \text{where the initial state is given by} \ \rho^{(0)} = \rho_0 \otimes |0\rangle \langle 0|
\]

Whilst the OQRW is based on the non-unitary dynamics induced by the local environment, observe that the Central Limit Theorem induced by the quantum walk (QW) is obtained (not necessarily) as a special case of Theorem 5.2 [8] as follows

Corollary 3:

Consider the stationary open quantum walk random walk on \(\mathbb{Z} \) associated to the operators \(\{B, C\} \), where \(B^* B + C^* C = I \), and \(B + C = \text{Unitary Matrix} \). Assume that the completely positive map

\[
L(\rho) = B\rho B^* + C\rho C^*
\]

admits a unique invariant state \(\rho_\infty \). Let \(\rho_n, X_n \in \mathbb{N} \) be the quantum trajectory process to this open quantum walk, then, \(X_n \Rightarrow N(0, \sigma^2) \) in \(\mathbb{R} \) where

\[
\sigma^2 = Tr \left(C\rho_\infty C^* - B\rho_\infty B^* \right)^2 + 2Tr \left(C\rho_\infty C^* - B\rho_\infty B^* \right)R,
\]

where \(R \) is the solution of the equation \(R - L^* \left(L \right) = C^* C - B^* B \).

On the other hand we also have the following, which is also (not necessarily) a special case of Theorem 5.2 [8]

Corollary 4:

Consider the stationary open quantum walk random walk on associated to the operators \(\{B, C\} \), where \(B^* B + C^* C = I \), and \(B + C \neq \text{Unitary Matrix} \). Assume that the completely positive map

\[
L(\rho) = B\rho B^* + C\rho C^*
\]

admits a unique invariant state \(\rho_\infty \). Let \(\rho_n, X_n \in \mathbb{N} \) be the quantum trajectory process to this open quantum walk, then, \(X_n \sim \frac{N(0, \sigma^2)}{\mu} \) in \(\mathbb{R} \), where \(\mu = Tr \left(C\rho_\infty C^* - B\rho_\infty B^* \right) \), and

\[
\sigma^2 = Tr \left(C\rho_\infty C^* - B\rho_\infty B^* \right)^2 - 2\mu Tr \left(C\rho_\infty C^* - B\rho_\infty B^* \right) R - 2\mu Tr(\rho_\infty R),
\]

where is the solution of the equation...
Remark 5: Note that \(\{\rho_n, X_n\}_{n \in \mathbb{N}} \) can be considered a Markov chain, and for details see Konno [5].

III. Open Quantum Random Walk in the Central Limit Theorem with Time-Dependence

In order to introduce time-dependence, we will take
\[
\begin{align*}
B &= -\frac{i}{\sqrt{2}} \begin{pmatrix}
\cosh(\theta) & 0 \\
0 & \cosh(\theta)
\end{pmatrix} \\
C &= \frac{i}{\sqrt{2}} \begin{pmatrix}
0 & \cosh(\theta) \\
0 & 0
\end{pmatrix}
\end{align*}
\]

Note that the matrix \(B + C \) is a special case of the time-dependent coin in eqn (7) of [9]. Moreover, \(B + C \) gives the Hadamard matrix,
\[
\frac{1}{\sqrt{2}} \begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix}
\]

With \(B, C \) as defined in this section, observe that the completely positive map \(L(\rho) = B\rho B^* + C\rho C^* \) admits the unique invariant state
\[
\rho_{\infty} = \frac{1}{2} I_2, \text{ where } I_2 \text{ is the } 2 \times 2 \text{ identity matrix.}
\]

Put
\[
\rho_{n} = \begin{pmatrix}
1 & 0 \\
0 & 2
\end{pmatrix}
\]

and since \(L(R) = BRB^* + CRC^* \), then upon solving \(R - L^*(R) = C^*C - B^*B \) with \(B, C \) as defined in this section, we get
\[
R = \begin{pmatrix}
\cosh(2\theta) & e^{-2\theta}\cosh(2\theta) \\
e^{2\theta}\cosh(2\theta) & 1
\end{pmatrix}
\]

Direct computation from Corollary 3 implies that
\[
\sigma^2 = 3\cosh(2\theta), \text{ and therefore, } X_{n \sqrt{n}} \Rightarrow N\left(0, 3\cosh(2\theta)\right)
\]

IV. Discretization of the Open Quantum Random Walk in the Central Limit Theorem with Time-Dependence

Using discretization criterion to obtain the discrete analogue of continuous distributions is popular in statistical distribution theory, and for a survey of methods the reader should consult [10]. In [11] the discrete analogue of the normal distribution was introduced as follows:

\[
P(Y = k) = \frac{k + 1 - \mu}{\sigma} - \frac{k - \mu}{\sigma}, \quad k = 0, \pm 1, \pm 2 \text{ where } \sigma > 0 \;
; \quad -\infty < \mu < +\infty; \quad \tilde{O}(.) \text{ is the cumulative distribution function of the standard normal distribution. Using this process to discretize, we can write the discrete version of } N\left(0, 3\cosh(2\theta)\right) \text{ as }
\]

\[
P(x, t) = \frac{1}{\sqrt{3\cosh(2\theta)}} \left(\frac{x + 1}{\sqrt{\cosh(2\theta)}} \right) - \frac{x}{\sqrt{\cosh(2\theta)}}, \quad x = 0, \pm 1, \pm 2;
\]

\(\tilde{O}(.) \) is the cumulative distribution function of the standard normal distribution, and \(t \) is the time step. Now we get an alternate solution to the problem in the conclusions of Liu et.al[4] by examining \(\lim_{t \to \infty} \frac{P(x, t)}{\sqrt{t}} \). The graph below shows that in the CLT of the OQRW with time-dependence, the asymptotic behavior is close to normal.

FIG 1: \(\lim_{t \to \infty} \frac{P(x, t)}{\sqrt{t}} \)

References

Citation: Clement Boateng Ampadu (2017) Asymptotic Behavior of the Hadamard Walk in the Central Limit Theorem of the Open Quantum Random Walk with Time-Dependence. SF J Quan Phy 1:1.